Retirement Incomes Policy:
Income Tax Simulations Paper

Report by Access Economics Pty Limited for
Challenger Financial Services
TABLE OF CONTENTS

1. Introduction ...1
2. The baseline outlook ...2
 2.1 Outcomes for retirees ..3
 2.2 Outcomes for Government ..9
 2.3 A commonsense check on the baseline results ..10
 2.4 Comparison of Access Economics’ baseline with Federal Treasury’s ..11
3. Tax reform options group #1 ..14
 3.1 Background to the tax reform simulations ...15
 3.2 Summary of the tax reform simulations ..16
 3.3 A more detailed look at option 6 ...22
 3.4 A more detailed look at option 9 ..24
 3.5 A more detailed look at option 10 ...27
 3.6 A more detailed look at option 23 ...30
Appendix A: The SuperSim model ...34
Appendix B: Lifetime versus current incomes ...37

Disclaimer
While every effort has been made to ensure the accuracy of this document, the uncertain nature of economic data, forecasting and analysis means that Access Economics Pty Limited is unable to make any warranties in relation to the information contained herein. Access Economics Pty Limited, its employees and agents disclaim liability for any loss or damage which may arise as a consequence of any person relying on the information contained in this document.
1. Introduction

Challenger Financial Services (‘Challenger’) is making a submission to the Henry Review outlining potential improvements to Australia’s retirement income policies.

To inform its submission, Challenger approached Access Economics to assess the various costs and benefits associated with a range of potential changes to policy.¹

Access Economics modelled two broad sets of simulations:

- Income tax reforms (essentially, changes to contributions taxes), building on the work done by Geoff Carmody & Associates (GCA).
- A shift towards annuities, building on the work done by Towers Perrin (TP).

¹ Access Economics has undertaken an independent ‘costing’ role for Challenger. We have neither designed nor advocated any specific policy proposals.
2. THE BASELINE OUTLOOK

Some background is useful here. When Australia first considered the shift to compulsory superannuation, most actuarial estimates of the required contribution rates to achieve adequate retirement incomes centred on a 15% contribution rate. The boom of recent years rapidly saw that equation change – personal income tax rates were lowered, the tax on superannuation end benefits was abolished, retirement ages lifted, benefits to self-funded retirees were increased, the age pension was formally indexed to wages rather than prices (and hence allowed for in modelling of future adequacy), and the withdrawal rate of pension entitlements was made more generous.

Most importantly, however, a long boom in markets here and overseas saw a marked leap in assets held both within and outside the superannuation sector.

Hence, although the legislated compulsory Superannuation Guarantee (SG) rate was only ever 9% (albeit propped up by voluntary contributions), estimates of retirement income adequacy leapt in recent years.

Despite the fact that Australia’s superannuation system is still well shy of maturity (when all workers will have paid compulsory superannuation across their entire working lives), retirement income adequacy rose rapidly, especially through 2007, aided by strong markets and by the legislative and regulatory changes accompanying the introduction of the Simpler Super system which led to a surge in voluntary contributions ahead of June 2007.

However, the global financial crisis has since seen the value of most sharemarkets halve.

Although other asset values have been less affected (which means both superannuation and overall wealth has fared better than share market wealth), updated estimates of retirement income adequacy have eased once more, though as of today they remain comfortably above where they were several years ago.

More broadly, Australia’s compulsory superannuation system remains a relatively new feature of the retirement incomes landscape, and a relatively long way from ‘system maturity’.

Current benefits paid from super reflect the experience of workers who have spent only a fraction of their working lives making contributions to super under the SG arrangements. As workers who have spent a greater share of their working lives within the system retire, benefits from super will rise to reflect that longer period of accumulation.

This maturing process is clearly evident in Chart 1 below. (Note that earnings in the chart move sharply in recent history because markets did the same.) While contributions can be expected to remain at current levels, the stock of super assets will grow over time. That is no surprise, since the super system is designed to operate over the whole of an individual’s working life, and that system has only been in place since 1992.

A long run, or ‘steady state’ level of super assets will take time to develop. Results from Access Economics’ SuperSim (discussed at Appendix A) baseline projections show the stock of super assets continuing to grow as a share of the economy for decades to come.

Note that, unlike Treasury’s analysis of superannuation, Access Economics’ includes both the superannuation holdings of workers and of retirees (whereas Treasury’s only includes...
those of workers – that is, super assets built up during ‘the accumulation phase’). To aid in comparability, Chart 1 uses the same approach as Treasury (that is, it shows super assets and flows built up during ‘the accumulation phase’).

CHART 1: SUPERANNUATION SYSTEM PROJECTIONS (ACCUMULATION PHASE)

This latter feature of Access Economics’ modelling approach means that it takes longer for the stock of super assets to ‘mature’ as a multiple of national income, because that requires not merely that all workers have contributed through all their working lives (that is, a mature accumulation phase), but also that all retirees have access to the resulting retirement benefits (a mature pension phase).

Benefits from super also rise as the current arrangements mature, with long run benefit levels expected to more than double their current share of output, at 10.2% of GDP.

2.1 OUTCOMES FOR RETIREES

As the super system matures, its importance in providing funds to support Australians in their retirement will grow.

Many of today’s retirees have spent less than half of their working lives in the SG system, while new entrants to the workforce can expect to contribute 9% of their wages for more than 40 years. As a result, future retirees will have accumulated more benefits from super, and will have higher incomes as a result.
Chart 2 includes two series – the income actually received in retirement (‘net retirement income’ in the chart), and the income earning potential as at the date of retirement (‘net benefits at retirement’ in the chart). In the mature system, capital drawdowns are being broadly offset by inflows of new capital. As a result, the difference in the two series in the chart above is driven by pensions and returns: the former series is higher than the latter due to the age pension, and because people are earning returns on their assets during their retirement.

Retirees can continue to rely on super benefits to provide income long after those benefits are removed from the accumulation phase of the super system.

Because income from super assets is taxed at concessional rates, the measures presented here are in after-tax terms. In the case of new net benefits, the value of all future taxes payable on super assets is accounted for. By including the tax advantages of super relative to other assets in retirement, the SuperSim model is able to better reflect the living standards of retirees.

Measuring those living standards is subjective, but can be made less so by means of a sensible yardstick. Once such method of measuring retirement living standards is known as a ‘replacement ratio’. By looking at the level of income in retirement relative to that in the later years of working life, this measure provides an indication of the relative change in living standards as workers move into retirement.

Chart 3 shows results for four such ‘replacement ratios’ from the SuperSim model baseline:
Ability to maintain in retirement the consumer spending achieved before retirement: The first replacement ratio compares the average level of income that retirees earn from super benefits and other investments such as rental housing or shares to the consumption spending of 55-59 year olds in the same year. By excluding taxes and savings from both items in this comparison, the focus is placed on that which matters most to the welfare of retirees – consumption of goods and services.

Ability to maintain in retirement the after-tax income achieved before retirement: The second replacement ratio measure is similar, except that it compares the average level of income that retirees earn from super benefits and other investments such as rental housing or shares to the incomes of 55-59 year olds. Because the income of 55-59 year olds is higher than the consumer spending of 55-59 year olds, this second measure is at lower levels than the first.

Ability to achieve a ‘modest but adequate’ (MBA) standard of living in retirement: The third measure compares incomes in retirement with the Westpac/ASFA Retirement Living Standard, which measures the cost of a fixed standard of living relative to that of the wider Australian community.

Ability to achieve a ‘comfortable’ standard of living in retirement: The final measure compares incomes in retirement with the Westpac/ASFA Retirement Living Standard, which measures the cost of a higher but still fixed standard of living relative to that of the wider Australian community.

Importantly, Chart 3 only shows averages. The different nature of these adequacy standards shows up better when they are examined across income deciles, as seen below in Chart 4 and Chart 5. (Note that the following two charts use income deciles with the latter measured
across lifetimes rather than at a point in time, making them a rather more robust indicator of the fairness impacts of the super system. This difference is explained and explored in Appendix B.)

A standard based on income or consumer spending relative to their pre-retirement equivalents draws on the theoretical antecedents in the work of Ando, Modigliani and Friedman who argued that individuals consider their well-being based on their estimates of that well-being over their entire lives.

Chart 4 below, which uses the ‘relative to pre-retirement consumer spending’ estimate of retirement income adequacy, falls as income rises.

Chart 4: Adequacy changes by decile over time – ‘consumption spending’ standard

That is because the age pension provides a very important floor for people on lower lifetime incomes. If their income was low enough, then the pension provides a living standard (ability to consume relative to pre-retirement incomes) of close to 100% for those on the lowest lifetime income decile.

In contrast, Chart 5 uses the ‘modest but adequate’ estimate of retirement income adequacy. It rises as income rises, providing a more intuitive ability to assess the fairness of the outcomes expected from current superannuation system policy settings.
In 2004, Treasury\(^2\) suggested “Analysis of the baby boomers, who have not had the benefit of the full SG in place throughout their working lives, shows that a single person on median earnings (receiving SG contributions from 1992 onwards) retiring at age 65 in 2010 or later, should reach or exceed the Westpac/ASFA ‘modest but adequate’ retirement budget.”

Chart 5: Adequacy changes by decile over time – ‘modest but adequate’ standard

Although they did not calculate an estimate, they implied that someone retiring in the mature superannuation system would therefore do rather better still.

Developments since then would presumably have moved Treasury’s estimated replacement rates on an MBA basis higher still (personal income tax cuts, the abolition of benefits tax and increased benefits to self-funded retirees, and more generous withdrawal rates of pension entitlements.)\(^3\)

\(^3\) As markets boomed since the 2004 Treasury paper and have since fallen back, the shift in markets between those two time periods is unlikely to have been a further major driver of changes in the assessment of adequacy.
Note that Access Economics’ MBA estimates are different again to RIMGROUP’s, as ours
(1) include voluntary contributions to the super system (as is appropriate to do) and (2)
Access Economics assumes faster rates of drawdown on lump sum assets.

Accordingly, our estimates on an MBA basis start at around 100% before rising to 175% over
time.

Note that Chart 5 above shows an adequacy range of 110% of the MBA standard for the
lowest lifetime income decile in 2057, rising to 280% of that standard for the top decile.

Remember that the full age pension (plus associated payments) provides an automatic floor
of some 75% of the MBA standard for retirees who can potentially qualify for the pension.

Given that the lifetime average wage and salary income of the bottom lifetime income decile
is $8,233 (total lifetime annual income for this group is $18,211 – see the discussion at
Appendix B, and remember that incomes are distributed more evenly across lifetimes than
they are at any given moment), then a combination of the 9% SG and the 6.25% assumption
on annual returns is indeed sufficient to lift that to 110% via super income and the drawdown
on super assets.

These measures are measuring different things, hence the different relativities between them
(seen in Chart 3 above) are not particularly informative. More informative are the recent
trends and the expected path these take in the future:

- **Recent trends**: To look at the first (consumer spending) measure, for example, the
 strong markets and (even more importantly) the strength in contributions ahead of the
 introduction of *Simpler Super* led to a surge in adequacy in recent years. After all, if
 people kept saving at the (artificially pumped up) rates evident ahead of the
 introduction of *Simpler Super*, then adequacy would indeed have been excellent.
 However, since that recent (and artificial) peak, markets have fallen and (even more
 importantly) so has the rate at which voluntary contributions are being made.

- **That said**, these estimates are benchmarked to estimates of today’s wealth, meaning
 that the adequacy path in recent history is a smoothed version of the recent (rather
 more volatile) market developments.

- **The forecasts**: The forecasts soon settle to an adequacy path which is fairly flat from
 the first half of the 2020s (that is, these are ‘projections’ rather than ‘forecasts’):
 - Note that, given that the super system is still maturing, that puts an upward bias
 to the adequacy measures over the next two decades.
 - So too do the preservation ages increases over time for both men and women.
 - Against that, expected further increases in life expectancy work the other way, as
 do the changes to the Age Pension age eligibility of women.
2.2 OUTCOMES FOR GOVERNMENT

The balance between contributions tax and earnings tax affects the timing of government revenue.

Contributions tax is the largest component of superannuation taxes, with benefits taxes only contributing a small fraction of the total – a picture which remains true in the mature system. Note that, although most superannuation benefits are tax-free after the age of 60:

- Benefits taxes are payable by those who have untaxed superannuation (such as most public sector employees).
- Benefits tax is paid by those who withdraw their superannuation (presumably due to their retirement) before the age of 60.
- Income tax is payable on any benefits withdrawn as a lump sum on any subsequent earnings on those lump sums. In Access Economics' modelling framework, this flow of personal income tax payments is recorded under the heading of 'benefits taxes'.

Benefits tax projections presented here also include the taxation of income streams (including the effects of the income stream rebate where applicable), as well as interest income from lump sum withdrawals.
While many issues surrounding the timing of tax are essentially transitional, the long term balance informs opinions of the relative importance of each of the elements of the taxation of the superannuation system.

Chart 7 shows the projected value of Federal Government revenues and co-contributions as a share of GDP.

Chart 7: Taxes and Co-contributions – Baseline Projections

2.3 A COMMONSENSE CHECK ON THE BASELINE RESULTS

Think of the mature superannuation system:

- If compulsory SG super of 9% is topped up by an additional 4 percentage points in voluntary super, then total contributions will be 13%. If wages and salaries are 55% of nominal GDP (not today, given the recent surge in the profit share which is now unwinding, but as an average over the longer term), then contribution flows may be expected to be around 13% x 55% = 7.2%.

 - In practice, Access Economics’ estimate of contribution flows is a little higher, at 8.3%. As noted below, that figure is benchmarked so as to be close to APRA estimates, though the latter may be boosted by the inclusion of some pre-tax flows. (That said, the 8.3% includes Federal Government co-contribution payments.)

 - If wages are 55% of nominal national income, then 8.3% implies a contribution rate of 15% of wages and salaries, a figure higher than some other estimates (though lower than assumed in Rice-Warner modelling in this field, such as that in their Superannuation Market Projections Report of December 2007 (see

- If the average working life is 36 years, the SG is 9%, wages are 55% of national income, earnings on super assets equal nominal income growth for the economy as a whole (that is, there is a constant wealth to income ratio), the contributions tax is 15%, earnings taxes are (an effective) 5\%, then the stock of superannuation assets belonging to workers will settle at $36 \times 9\% \times 55\% \times (100\% - 15\%) \times (100\% - 5\%) = 131\%$ of national income (compared with 98\% as at mid-2008, and closer to 80\% as of today).

- This figuring becomes more complex when you allow for an Equity Risk Premium (ERP) of 1\% per year to be earned on superannuation assets. Access Economics does not usually allow an ERP as that leads to a rising wealth-to-income ratio over time, a result we are not comfortable with, but has done so here to keep results more closely comparable with those of Treasury. Allowing for the latter means that, given a starting stock of super assets of some 80\% of GDP would, after a 36 year working life, become equal to $80\% \times (1.01^{36}) = 114\%$ of GDP – that is, allowing for an ERP of 1\% per year adds a further 34\% of GDP, raising the expected total to around 165\% of GDP.

 - In practice, Access Economics’ estimate of superannuation assets belonging to workers in the longer term is 162\% of GDP.

2.4 COMPARISON OF ACCESS ECONOMICS’ BASELINE WITH FEDERAL TREASURY’S

Federal Treasury’s Retirement and Intergenerational Modelling and Analysis (RIMA) Unit has used its RIMGROUP model to estimate a ‘baseline’ view of the future of superannuation.

Those results were discussed in *Projecting The Distributions Of Superannuation Flows And Assets*, by Dr George Rothman and David Tellis, 4 July 2008.

The RIMGROUP model differs in a number of ways from Access Economics’ *SuperSim* model, but it is useful to compare the baseline results from both models.

Chart 8 shows Treasury’s forecasts of the future. It may be usefully compared with Chart 1, which shows the matching *SuperSim* model results.

These results are shown through to 2040-41, both because that is as far out as this particular RIMGROUP paper projected, and because that year marks close to maturity for someone working 36 years with an SG rate of 9\%.

\[4\] Where ‘effective’ in this instance allows not merely for tax offsets available to super funds from the likes of franking credits, but also that earnings tax applies to less than the total stock of superannuation assets (that is, the earnings, rather than contributions plus earnings). Note that whereas the simple rule of thumb above uses an effective tax rate on earnings of 5\% (and applies it to the total, rather than just the earnings component of the total), the matching RIMGROUP assumption is “effective tax rates on the earnings of superannuation funds of 3 per cent for defined benefit funds, 4 per cent for established defined contribution funds, 5 per cent for SG funds and 10 per cent for rollover funds” – see page 28 of Rothman and Tellis.

\[5\] Rather more complex than this deliberately simplistic description allows.
(As noted above, the Treasury work concentrates on the accumulation phase of super, while Access Economics’ modelling also includes the super holdings of retirees. The latter continue to build well after 2040-41. We report here on as close as possible to a matching basis to Treasury.)

CHART 8: FEDERAL TREASURY BASELINE PROJECTIONS

The differences are summarised in Table 1 below.

TABLE 1: DIFFERENCES BETWEEN ACCESS ECONOMICS’ AND TREASURY BASELINE RESULTS

<table>
<thead>
<tr>
<th>2040-41 estimates as a ratio to GDP</th>
<th>Treasury’s RIMGROUP model</th>
<th>AE SuperSim model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Contributions - see note 1</td>
<td>5.4%</td>
<td>8.3%</td>
</tr>
<tr>
<td>Benefits - see note 2</td>
<td>7.0%</td>
<td>8.9%</td>
</tr>
<tr>
<td>Earnings - see note 3</td>
<td>5.0%</td>
<td>10.2%</td>
</tr>
<tr>
<td>Superannuation assets - see note 4</td>
<td>147%</td>
<td>162.2%</td>
</tr>
<tr>
<td>Replacement (consumption) - see note 5</td>
<td>81%</td>
<td>70.5%</td>
</tr>
</tbody>
</table>

- **Note 1:** The 2005-06 Australian Prudential Regulation Authority (APRA) and Australian Taxation Office (ATO) data show total contributions (concessional (employer) and non-concessional (member) contributions, plus the Government co-contribution) at 8.1% of nominal GDP in that year. Access Economics has contributions at 8.3% of GDP, because we have benchmarked against the APRA results. In contrast, RIMGROUP finds “that (contribution) inflows are projected to be a relatively flat 5 per cent of GDP” (see page 24 of RIMGROUP 2008). The RIMGROUP figure differs from the others noted here by being net of the 15% contributions tax (where that applies), which explains part but not all of the difference. It may be that some of the contribution flows as reported by APRA are pre- rather than post-tax, which could potentially bias the latter upwards (by perhaps 0.6 percentage points). This latter wedge may also be a further factor in explaining the differences here. In addition, the Access Economics figure also includes Federal Government co-contribution payments.

- **Note 2:** A simple way to think of the mature super system is one in which population is steady, and so is the age composition of the population. In addition, there is no price or wage inflation, no return on super assets, and all workers earn the same wage. In such a world, the only wedge between what you pay in as contributions (Treasury’s...
‘inflows’) and what you are paid out as benefits (Treasury’s ‘outflows’) is due to taxes. That is why benefits will equal contributions less taxes in the mature system, as earnings simply keep pace with the growth in the nominal economy. Tax will therefore take out somewhere between 15% (the contributions tax rate) and 5% (the effective rate on earnings). As the RIMGROUP contributions estimate, at 5.4% of GDP, is already net of taxes, its benefits estimate might be expected to be similar. However, its earnings estimate of 7.0% is above nominal growth in the economy (implying a steady rise in the wealth to income ratio over time), which is why its benefits estimate is higher, at 7.0%. If we did not assume an ERP, then Access Economics’ benefits estimate, at 7.3% of GDP, would be about 12% less than our contributions estimate, implying a sensible average tax rate. Once we allow for an ERP of 1%, our benefits estimate rises to 10.2% of GDP. The gap between contributions and benefits estimates is higher for Treasury (at 1.6% of GDP) than it is for Access Economics (at 1.3% of GDP) because their earnings assumption of 7% is above ours of 6.25% (equal to nominal GDP of 5.25% plus an ERP of 1%).

Note 3: The RIMGROUP earnings assumption is “7 per cent per annum for the average pre-tax return of superannuation funds (after expenses of managing funds but before tax and administrative expenses are deducted separately on a per capita basis)”. In contrast, Access Economics’ is set to equal growth in nominal GDP plus an ERP of 1%, which effectively means close to 6½% per year. As RIMGROUP’s stock of super assets is 147% of GDP in 2040-41, and its earnings assumption is 7%, it is not clear why its earnings in 2040-41 are not 7% x 147% = 10.3% less an implied tax rate (leaving the total somewhere around 9% of GDP). Moreover, as earnings are a function of the stock of assets, it is even more unclear why the earnings and assets lines in Chart 8 do not carve out the same upward arc over time, with earnings simply 7% of assets. Access Economics’ earnings estimate for 2040-41, at 9.2% of GDP, sits in line with its estimated asset stock of 162% of GDP (that is, 6.25% x 162% = 10.1%, less an implied tax rate of 12.7% = 8.9% of GDP).

Note 4: Treasury’s stock of super is 147%. On a like-with-like (that is, focused on the accumulation phase alone, Access Economics’ matching estimate is higher, at 162%. As discussed above, the Access Economics estimates seem to fit with expectations for these numbers based on simple rules of thumb. Our higher estimate is also consistent with the net impact of our figuring for contributions (which are higher than Treasury’s).

Note 5: Treasury’s RIMGROUP considered replacement rates in the 2007 paper *The Adequacy Of Australian Retirement Incomes – New Estimates Incorporating The Better Super Reforms*, George P Rothman, Retirement and Income Modelling Unit, Department of the Treasury. That paper found that “Replacement ratios are projected to rise significantly over time: in the case of workers from a little over 50 per cent currently to 70 per cent around 2020 and over 80 per cent by 2032’ (see page 10). Those estimated here are similar to 2020 (on the ‘relative to pre-retirement consumer spending’ adequacy measure), but drop behind the Treasury estimates thereafter. There are likely to be two key differences here – longevity projections and earnings assumptions. It would appear that, relative to Treasury’s estimates, Access Economics assumes longevity grows faster but that earnings rates are lower. The longevity effect is relatively notable. We have longevity growing by sufficient to add about 12% to the average time spent in retirement across the modelling horizon. Other things equal (which they are not), that would imply a change in ‘consumer spending’ replacement rates over time such that 70% / (100% – 12%) = 80%, a figure closer to Treasury’s.
3. TAX REFORM OPTIONS GROUP #1

Box 1 below summarises the options relating to the tax treatment of eligible contributions and (accumulation phase) earnings (tax reform options group #1). These have been proposed by Geoff Carmody and Associates. Their rationale is explained in a separate report.

Box 1: Superannuation policy reform options: tax reform options group #1

<table>
<thead>
<tr>
<th>Option</th>
<th>Contributions tax rate</th>
<th>Earnings tax rate*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Standard income tax (a)</td>
<td>15%</td>
</tr>
<tr>
<td>2.</td>
<td>Standard income tax (a)</td>
<td>0%</td>
</tr>
<tr>
<td>3.</td>
<td>15 percentage points rebate (b)</td>
<td>15%</td>
</tr>
<tr>
<td>4.</td>
<td>15 percentage points rebate (b)</td>
<td>0%</td>
</tr>
<tr>
<td>5.</td>
<td>30 percentage points rebate (c)</td>
<td>15%</td>
</tr>
<tr>
<td>6.</td>
<td>30 percentage points rebate (c)</td>
<td>0%</td>
</tr>
<tr>
<td>7.</td>
<td>15 percentage points rebate (c)</td>
<td>15%</td>
</tr>
<tr>
<td>8.</td>
<td>15 percentage points rebate (c)</td>
<td>0%</td>
</tr>
<tr>
<td>9.</td>
<td>Variable tax discount #1 (d)</td>
<td>15%</td>
</tr>
<tr>
<td>10.</td>
<td>Variable tax discount #1 (d)</td>
<td>0%</td>
</tr>
<tr>
<td>11.</td>
<td>Variable tax discount #2 (e)</td>
<td>15%</td>
</tr>
<tr>
<td>12.</td>
<td>Variable tax discount #2 (e)</td>
<td>0%</td>
</tr>
<tr>
<td>13.</td>
<td>Variable tax discount #3 (f)</td>
<td>15%</td>
</tr>
<tr>
<td>14.</td>
<td>Variable tax discount #3 (f)</td>
<td>0%</td>
</tr>
<tr>
<td>15.</td>
<td>Variable tax discount #4 (g)</td>
<td>15%</td>
</tr>
<tr>
<td>16.</td>
<td>Variable tax discount #4 (g)</td>
<td>0%</td>
</tr>
<tr>
<td>17.</td>
<td>Abolish Co-contribution</td>
<td>15%</td>
</tr>
<tr>
<td>18.</td>
<td>Abolish Co-contribution</td>
<td>0%</td>
</tr>
<tr>
<td>19.</td>
<td>13. + Variable tax discount #5 (h)</td>
<td>15%</td>
</tr>
<tr>
<td>20.</td>
<td>14. + Variable tax discount #5 (h)</td>
<td>0%</td>
</tr>
<tr>
<td>21.</td>
<td>13. + Variable tax discount #6 (i)</td>
<td>15%</td>
</tr>
<tr>
<td>22.</td>
<td>14. + Variable tax discount #6 (i)</td>
<td>0%</td>
</tr>
<tr>
<td>23.</td>
<td>Zero tax on SG contributions (j)</td>
<td>15%</td>
</tr>
<tr>
<td>24.</td>
<td>Zero tax on SG contributions (j)</td>
<td>0%</td>
</tr>
</tbody>
</table>
Footnotes:

* Accumulation phase: tax rate assumed to be zero in pension phase (as is currently the case).

(a) Including Medicare Levy as applicable; applies to all other options. Standard tax bracket thresholds.

(b) Non-refundable rebate. Standard tax bracket thresholds.

(c) Refundable rebate. Standard tax bracket thresholds.

(d) 100% discount for 15% bracket; 50% discount for 30% bracket; 25% discount for 40% bracket; 0% for 45% bracket. Standard tax bracket thresholds.

(e) 15% refundable super tax credit for 0% tax bracket; 100% discount for 15% bracket; 50% discount for 30% bracket; 25% discount for 40% bracket; 0% for 45% bracket. Standard tax bracket thresholds.

(f) 15% refundable super tax credit for 0% tax bracket; 50% discount for 15% bracket; 25% discount for 30% bracket; 10% discount for 40% bracket; 0% for 45% bracket. Standard tax bracket thresholds.

(g) 15% refundable super tax credit for 0% tax bracket; 50% discount for 15% bracket; 25% discount for 30% bracket; 0% discount for 40% bracket; 0% for 45% bracket. Standard tax bracket thresholds.

(h) 200% refundable super tax credit for 0% tax bracket; 150% discount for 15% bracket; 100% discount for 30% bracket; 25% discount for 40% bracket; 0% for 45% bracket. Standard tax bracket thresholds.

(i) 150% refundable super tax credit for 0% tax bracket; 125% discount for 15% bracket; 75% discount for 30% bracket; 25% discount for 40% bracket; 0% for 45% bracket. Standard tax bracket thresholds.

(j) Zero contributions tax on all SG contributions (capped where SG contributions are capped).

Costing bases:

I. No behavioural change. Full year effects, financial years 2009-10, Forward Estimates Years (10-11 to12-13), plus years out to 2049-50*.

II. Behavioural change. Full year effects, financial years 2009-10, Forward Estimates Years (10-11 to12-13), plus years out to 2049-50*.

* The costings for years out to 2049-50 to cover both revenue forgone, and age pension savings, relative to business-as-usual.

3.1 BACKGROUND TO THE TAX REFORM SIMULATIONS

Access Economics’ past analyses of changes to contribution tax have indicated tax changes are very close to a ‘zero sum game’ if the behaviour of members does not change.

Any change to tax rates or thresholds that is not offset by changes elsewhere in the system results in an increase or reduction in the overall burden of tax on the super system.

It is important to note that although there may be significant timing changes that raise or lower tax revenue in the short term, any change to the overall tax burden is a transfer between the government and retirees.

The simulations presented in this report show this zero sum game in a long run context.

While there are some income stream taxation issues surrounding the net result of this transfer, there is no ‘magic pudding’ in changes to the taxation of super. In present value
terms, the system is a zero sum game, with any benefit to either government revenue or retiree incomes coming at the direct expense of the other party.

A long run view of the system as a single ‘pot’ of funds (divided between the government and members) illustrates an important point: If behaviour is unchanged, then a change to super tax can only raise either government revenue or retiree benefits. In the long run it is not possible to increase both.

The SuperSim Model is able to distinguish between timing effects and shifts in the overall tax burden. This provides an opportunity to provide a more accurate indication of the impact of complex changes on both government revenue and retiree benefits.

In brief, this discussion means that if, say, super taxes are cut by \(x\% \) of GDP, then retiree benefits rise by \(x\% \) of GDP. (It is more complicated than that, in part because lower super taxes lead to higher personal income tax collections.)

That said, as the results presented later show, what is a zero sum game for totals is not a zero sum for the distribution of effects.

It is also worth noting that cutting contribution tax (either via a progressive tax or a single step equivalent) results in a smaller loss to contributions tax revenue than might have otherwise been thought.

That is because:

- Contributions tax is only levied on 55%-60% of super contributions (that is, those which are deductible or employer contributions – not on after-tax contributions).

- Results presented here are net of taxes in retirement. That means increased benefits result in increased average tax rates – both within the Reasonable Benefit Limits (RBL) system and the broader income tax system.

Over and above that, there are key targeting issues at stake: the distribution of super tax concessions is at least as important as the aggregate quantum.

That said, it is clear that current superannuation incentives are particularly poor for the low paid – for them, SG is compulsion rather than opportunity.

3.2 SUMMARY OF THE TAX REFORM SIMULATIONS

There are four summary charts presented here. They show changes attributable to each of the 24 reform options as at 2040-41 to:

- Retiree incomes (shown as a % of GDP).
- The cost to the Federal Government (also shown as a % of GDP).
- The redistribution in favour of (or against) those with lower lifetime incomes (measured here as the difference in impacts between the second and the eighth lifetime income deciles arising from the specific option). In turn, these are measured against the ‘modest but adequate’ retiree income yardstick discussed earlier.

Or, in other words and as discussed above, most such options:

- Shift money between the Government and retirees, with the potential for some timing changes that therefore either add to or subtract from the size of assets held inside the super system.
Shift money between retirees (such as across deciles, or generations).

In brief, this set of options leads to a relatively consistent set of results against several different ‘groups’ of these options.

CHART 9: THE 24 TAX REFORM OPTIONS: CHANGES TO RETIREE INCOMES AT 2040-41 (% OF GDP)
Chart 10: The 24 Tax Reform Options: Redistribution of Retiree Incomes as at 2040-41 (% of GDP)

Chart 11: The 24 Tax Reform Options: Changes to the Contribution to Government Costs as at 2040-41 (% of GDP – a negative implies an increased cost to government)
3.2.1 **OPTIONS 1, 9, 11, 13, 15, 19 AND 21**

Several themes run through the simulation results. Options 9, 11, 13 and 15 allow for various forms of discounts to the contributions tax rate while retaining the earnings tax rate at 15%. This set of options provides a relatively consistent hit to aggregate retiree incomes at around half a percentage point of GDP. They add close to one percentage point of GDP to government coffers, with the difference between those two levels mostly a matter of timing. Again, aggregates are getting a lot of attention, but what about distribution?

In turn, that timing affects the level of assets held within the superannuation system. For example, and as Chart 12 shows, these options (which, as at 2040-41 add more to Government coffers than they have added to retiree incomes) are therefore consistent with smaller balances held in the superannuation system.

Options 1, 19 and 21 are also broadly similar to this group. The nature of the income tax discounts allowed for introduces a degree of progressivity, such that the resulting losses to retirement income adequacy measured on a ‘modest to adequate’ standard of retirement living fall more heavily on those with higher lifetime incomes than those with lower lifetime incomes.

3.2.2 **OPTIONS 2, 5, 12, 14, 16, 17, 20 AND 22**

Options 10, 12, 14, 16, 20 and 22 are a second group of options which also result in a broadly consistent set of outcomes. These options are similar to the earlier set (9, 11, 13, 15, 19 and 21), with the exception that the earnings tax rate falls to zero.
The abolition of earnings tax shifts retiree incomes from the red to the black, and the related cost to government flattens out to be near zero. Accordingly, there is relatively little impact on the size of the superannuation system.

However, whereas the variable tax discounts improve the relative fairness of retirement incomes, that is mostly undone by the abolition of the earnings tax – the first move is deliberately engineered to be of relative assistance to those at the bottom end, whereas the abolition of earnings tax helps those with higher retirement income balances, which thereby swings the redistributive affects back again.

Options 2, 5 and 17 are also broadly similar to this group.

3.2.3 OPTIONS 6, 18, 23 AND 24

Another set of options which share broad outcome characteristics are options 6, 18, 23 and 24. Other things equal, a 30 percentage point rebate on contributions tax notably boosts retiree incomes, and the same is true of the combination of the abolition of the co-distribution alongside the abolition of earnings taxes (simulation 18).

The boost to retiree incomes comes at a broadly similar cost to government finances of around one percentage point of GDP for option 18, rising to 1.3 percentage points of GDP for option 6.

Both these options swing the distribution of improved retiree incomes notably to the top end of lifetime incomes.

3.2.4 SUMMARY CHARTS

These patterns across the options may be discerned more clearly in Chart 13. It ranks the options by their impact on the size of the super system (change in assets, shown as dollar figure in today’s dollars), and shows that:

- Retiree incomes and Government costs (also seen here in today’s dollars) move inversely – when incomes to retirees rise, costs to Government rise.
- As retiree incomes are typically less affected than Government costs (because there is a lag between the revenue costs to Government and the ultimate effect on retiree incomes), there is also a close relationship between retiree incomes and the overall size of the super system (that is, ‘funds under management’).

Chart 14 includes the same scenarios (ordered the same way) but shows their redistributive effects (the difference in dollars going to the eighth and second lifetime income deciles). These show the opposite pattern to Chart 13. That is, savings to Government / reductions in retiree incomes / reductions in the stock of assets in the superannuation system tend to improve relative adequacy, and vice versa.
The following sections provide a more detailed examination of several of the options with 'typical' impacts.
3.3 A MORE DETAILED LOOK AT OPTION 6

Table 4 below summarises the key ‘macro’ or system-wide impacts of several options.

<table>
<thead>
<tr>
<th>2040-41 estimates as a ratio to GDP</th>
<th>Option 6</th>
<th>Option 9</th>
<th>Option 10</th>
<th>Option 23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Earnings</td>
<td>1.23%</td>
<td>-1.01%</td>
<td>-0.05%</td>
<td>0.55%</td>
</tr>
<tr>
<td>Superannuation assets</td>
<td>1.12%</td>
<td>-0.60%</td>
<td>0.33%</td>
<td>0.27%</td>
</tr>
<tr>
<td>Pension cost</td>
<td>19.64%</td>
<td>-15.95%</td>
<td>-0.57%</td>
<td>8.63%</td>
</tr>
<tr>
<td>Net retirement income</td>
<td>-0.08%</td>
<td>0.04%</td>
<td>-0.03%</td>
<td>-0.02%</td>
</tr>
<tr>
<td>Replacement (consumption)</td>
<td>0.79%</td>
<td>-0.51%</td>
<td>0.19%</td>
<td>0.23%</td>
</tr>
<tr>
<td>Replacement (MBA)</td>
<td>5.58%</td>
<td>-1.73%</td>
<td>1.69%</td>
<td>0.86%</td>
</tr>
</tbody>
</table>

Focussing on option 6, that option involves a 30 percentage point refundable tax rebate applied to the standard tax bracket thresholds.

Chart 15 shows the impact of option 6 on retiree benefits and incomes, which grow steadily (and notably) over time. Chart 16 shows the cost to Government, with a considerable overall cost gradually pegged back by some savings on the age pension.

Chart 15: Effects of Option 6 on Retiree Benefits and Incomes (Relative to Baseline)

% GDP

Retiree benefits and net retirement income

Net Retirement Income

Net benefits at retirement

2005 2015 2025 2035 2045 2055 2065 2075
Chart 16: Effects of Option 6 on Government Taxes and Co-contributions

Chart 17: Effects of Option 6 on the Consumption Measure of Adequacy – Absolute Percentage Point Difference by Income Decile (Relative to Baseline)
Chart 17 shows the difference in the level of the ‘consumer spending’ adequacy measure, while Chart 18 does the same using the ‘modest but adequate’ standard for adequacy. The first measure is a relative one, and the second is an absolute one, with that difference explaining the differential slopes seen in the two charts.

The overall impact of the option is large, hence the large gains seen in Chart 18.

CHART 18: EFFECTS OF SCENARIO 6 ON THE ‘MODEST BUT ADEQUATE’ MEASURE OF ADEQUACY – ABSOLUTE PERCENTAGE POINT DIFFERENCE BY DECILE FROM BASELINE

<table>
<thead>
<tr>
<th>D01</th>
<th>D02</th>
<th>D03</th>
<th>D04</th>
<th>D05</th>
<th>D06</th>
<th>D07</th>
<th>D08</th>
<th>D09</th>
<th>D10</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>5%</td>
<td>10%</td>
<td>15%</td>
<td>20%</td>
<td>25%</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4 **A MORE DETAILED LOOK AT OPTION 9**

Relative to the current flat 15% contributions tax, option 9 involves a full (100%) discount for the 15% bracket threshold; a 50% discount for the 30% bracket; a 25% discount for 40% bracket; and no discount for the 45% bracket.

Unlike option 6, however, earnings tax is maintained at 15%.

Chart 19 shows the impact of option 9 on retiree benefits and incomes, while Chart 20 shows the cost to Government. In brief, the proposed tax rates are sufficient, on average, to lower retiree incomes (see Chart 19) while adding to net Government revenues (see Chart 20).
CHART 19: EFFECTS OF OPTION 9 ON RETIREE BENEFITS AND INCOMES

![Graph showing the effects of option 9 on retiree benefits and incomes](chart_19)

CHART 20: EFFECTS OF OPTION 9 ON GOVERNMENT TAXES AND CO-CONTRIBUTIONS

![Graph showing the effects of option 9 on government taxes and co-contributions](chart_20)
CHART 21: EFFECTS OF OPTION 9 ON THE CONSUMPTION MEASURE OF ADEQUACY – ABSOLUTE PERCENTAGE POINT DIFFERENCE

CHART 22: EFFECTS OF OPTION 9 ON THE ‘MODEST BUT ADEQUATE’ MEASURE OF ADEQUACY – ABSOLUTE PERCENTAGE POINT DIFFERENCE FROM BASELINE BY INCOME DECILE
The pattern in the tax discounts is weighted more heavily to the lower end. Accordingly, Chart 21 (which shows the difference in the level of the ‘consumer spending’ adequacy measure) indicates little change for the bottom three lifetime income deciles, with the weight of the lost retiree income falling on the other deciles.

Measured in terms of an absolute standard (Chart 22, which uses the ‘modest but adequate’ standard for adequacy, the falls in adequacy build as income rises.

3.5 A MORE DETAILED LOOK AT OPTION 10

Option 10 involves a full (100%) discount for the 15% bracket threshold; a 50% discount for the 30% bracket; a 25% discount for 40% bracket; and no discount for the 45% bracket.

Unlike option 9, earnings tax is abolished.

The latter changes this from an option which is a net negative for retiree income into one with less change.

Chart 23 shows the impact of option 10 on retiree benefits and incomes. Its ‘humped’ shape reflects the assumed indexation of the relevant thresholds to prices rather than wages, meaning that the gains to retiree incomes from abolishing earnings tax are gradually pegged back again as ‘bracket creep’ raises average effective tax rates on contributions. (Tax thresholds are assumed to rise with the CPI over time, but wages rise faster than prices, meaning that there is ‘real’ bracket creep in the figuring.)
That pattern is indeed evident in Chart 24, which shows the cost to Government swinging back over time.

Chart 24: Effects of Option 10 on Government Taxes and Co-contributions
Chart 25: Effects of Option 10 on the Consumption Measure of Adequacy – Absolute Percentage Point Difference

The chart illustrates the effects of Option 10 on the consumption measure of adequacy, showing absolute percentage point differences across different scenarios labeled D01 to D10.

- D01: 4%
- D02: 3%
- D03: 2%
- D04: 1%
- D05: 0%
- D06: 1%
- D07: 2%
- D08: 3%
- D09: 4%
- D10: 5%
Chart 25 shows the difference in the level of the ‘consumer spending’ adequacy measure, while Chart 26 does the same using the ‘modest but adequate’ standard for adequacy. As at 2040-41 this option is better for mid-ranking lifetime income deciles than it is for the top end of the lifetime income distribution.

3.6 A MORE DETAILED LOOK AT OPTION 23

Option 23 involves a shift to zero tax on SG contributions.

Chart 27 shows that the impact of option 23 on retiree benefits and incomes builds steadily, while Chart 28 shows the cost to Government takes longer to become evident.

(Consistent with that pattern, this is one of the option which adds to the size of the assets held in the super system.)
Chart 27: Effects of Option 23 on Retiree Benefits and Incomes

Retiree benefits and net retirement income

- **Net Retirement Income**
- **Net benefits at retirement**

Chart 28: Effects of Option 23 on Government Taxes and Co-contributions

Government Revenues and Co-contributions

- Co-Contributions
- Total Superannuation
- Age Pension costs
- Total

Change from baseline - % GDP

2005 2015 2025 2035 2045 2055 2065 2075
Chart 29: Effects of Option 23 on the Consumption Measure of Adequacy – Absolute Percentage Point Difference from Baseline

Chart 30: Effects of Option 23 on the ‘Modest but Adequate’ Measure of Adequacy – Absolute Percentage Point Difference from Baseline
Chart 29 shows the difference in the level of the ‘consumer spending’ adequacy measure, while Chart 30 does the same using the ‘modest but adequate’ standard for adequacy.

The abolition of contributions tax has a flat profile in terms of relative income adequacy, with the exception that the bottom three lifetime income deciles – who have worked for proportionally less of their lives – do less well.

In terms of the absolute income standard, this scenario results in solid and rising gains across the lifetime income range.
APPENDIX A: THE SUPERSIM MODEL

Access Economics’ SuperSim model projects retirement savings outcomes in Australia over the coming century. It combines broad scope, detailed projections and unmatched flexibility to provide a level of modelling sophistication previously reserved for government agencies.

It also has a broad range of relevant policy levers, allowing for many of the potential options likely to be explored as part of this project.

That has the particular advantage of making it easy to adjust some of the key drivers of the outcomes, which is critical to the success of the project as policy options are developed and updated in the short timeframe available.

Access Economics’ SuperSim model is a dynamic, long run model designed to project outcomes for retirement savings in Australia. It includes detailed projections of outcomes within the superannuation system, and a flexible framework for measuring the impact of changes to super policy.

KEY OUTPUTS

At its broadest level, the model is able to project outcomes for:

- **Working households.** Relevant stocks and flows among pre-retirement households, are presented in a framework similar to the ABS national accounts, including:
 - Household income
 - Household savings by broad asset class
 - Household consumption

- **Retirees.** Detailed projections of assets at retirement are coupled with an allocated pension framework to create a full suite of private asset and income projections for retirees.

- **Governments.** Taxes on income, housing and superannuation are projected within the model, and policy changes flow through to all other aspects of the results, including through the behavioural responses of individuals.

- **Asset markets.** As retirement savings are accumulated within the model, projections of total assets within each broad class are available.

At finer levels of detail the model provides insights into the savings experience of a range of groups, allowing analysis of retirement outcomes:

- **By age, and date of retirement.** Model results can be tailored to show impacts of specific generations of retirees, as well as retirement cohorts.

- **By current and lifetime income.** A dual income distribution allows the model to distinguish between the ‘asset rich’ and the ‘income rich’ at any point in time.
KEY INPUTS AND ASSUMPTIONS

Underlying the richness of the model results is a robust and flexible methodology. In keeping with the policy modelling focus of the SuperSim model, scenario analysis can be conducted on a wide range of assumptions, including key model equations.

A complete list of possible changes would be long – the input-related sections of the model alone contain over 1,800 variables.

Some of these parameters are more important than others, and make up a standard set of ‘levers’ which provide for a range of possible future scenarios. This section outlines the major inputs and assumptions which might be varied in a straightforward simulation of the model.

ECONOMIC ASSUMPTIONS

Economic projections in the model are constructed from historical data and assumptions about future trends in key variables. At their simplest, these assumptions resemble those in the Commonwealth’s Intergenerational Reports (IGRs), though a more detailed view of economic trends can be informed by Access Economics macroeconomic model (the AEM).

Assumptions are made about the following variables, in each year of the projection period:

- Population projections, by age cohort. Current values reflect the most recent population projections from the ABS.

- Inflation. Current values reflect IGR assumptions.

- Productivity growth. Current values reflect IGR assumptions.

- Participation rates by age cohort. Current values reflect IGR assumptions.

Changing the values of any of these assumptions, year by year, is a simple matter within the model. In this way, the model can create new economic projections to suit any scenario. That is a key advantage given the current economic circumstances surrounding the review.

SUPER SYSTEM PARAMETERS

Much of the SuperSim modelling uses known system parameters, such as the 9% SG rate, to project future outcomes. While many of these values are fixed over time, they present opportunities for scenario analysis to reflect changes in government policy, and alternative views of future consumer behaviour in the retirement savings system.

A selection of key parameters might include:

- The SG Rate. While there is little prospect of a change to the 9% SG rate in the near future, this parameter allows the model to consider the impact of a broad lift in super contributions.

- Preservation arrangements. Preservation rules currently provide an important threshold for super benefits, but given demographic trends, there may pressure to further increase the preservation age in coming years. A set of parameters identifying eligibility for super benefits is available by age, allowing staggered changes to preservation ages over time.

- Voluntary contribution rates. Voluntary contributions are modelled in detail within the model, but assumptions about the level and source of these contributions can be
varied for each scenario. Separate parameters are available by contribution type, allowing changes to effect salary sacrifice contributions and after tax contributions separately. Current values assume that recent contributions behaviour is unchanged over the projection period. For each year in the projection period changes can be made both by age cohort, and current year income decile.

- **Earnings rates by broad asset class.** Earnings in the SuperSim model are currently set to growth in nominal GDP, plus an optional ‘equity risk premium’, and are equal for super, housing and other assets. Each of these assumptions can be varied in each year to create a wide range of potential scenarios for future investment performance.

- **Income stream purchases.** Shares of the benefits from the super system which are withdrawn as an income stream product are currently informed by a combination of industry statistics and ATO TaxStats. This assumption can be varied by type of super (employer or after tax contributions), by year. The model’s parameters are set to assume that two-thirds of member benefits at retirement are taken as a lump sum, which is then drawn down at double the rate of superannuation allocated pensions.

Again, all the above parameters can be changed to suit any new scenario within the model.

TAXES AND SUBSIDIES

The SuperSim model has been designed to measure the impacts on retirement incomes of changes to the complex system of taxation surrounding superannuation in Australia. It is therefore well placed to simulate a range of scenarios for future taxes and co-contribution arrangements.

Key input variables include:

- **Income tax rates and thresholds.** Incentives to contribute to super are closely tied to the income tax system, and the deductibility of some contributions mean that changes to the super system can have ‘second round’ impacts on income tax revenues received by the government. All current rates and thresholds, including the Medicare levy and the low income tax offset, can be altered within the model for any year in the projection period.

- **Super contributions tax rates.** The 15% tax on contributions to super is perhaps the most visible of the current super taxes. The model allows this rate to be altered in any year.

- **Earnings taxes.** Within the SuperSim model, final ‘effective’ rates of earnings tax reflect two factors – the rate of tax, and the value of imputation credits available to funds for the purpose of offsetting their earnings tax liability. Both of these can be varied as part of any scenario.

- **The government co-contributions scheme.** The SuperSim model includes options for this scheme that include all current policy parameters, plus options to extend and alter targeting of the scheme. Inputs for each year of the projections include:
 - Income thresholds (including adding new thresholds).
 - Matching rates (including the addition of variable rates and phase-outs).
 - Maximum contributions (including phase-out rates).
APPENDIX B: LIFETIME VERSUS CURRENT INCOMES

Appendix Table 1 compares estimates of average income within each current and lifetime decile.

APPENDIX TABLE 1: AVERAGE ANNUAL INCOME BY DECILE – 2005-06

<table>
<thead>
<tr>
<th>Current year income deciles</th>
<th>Lifetime income deciles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Average Wage & Salary Income</td>
</tr>
<tr>
<td>Decile 1</td>
<td>$0</td>
</tr>
<tr>
<td>Decile 2</td>
<td>$129</td>
</tr>
<tr>
<td>Decile 3</td>
<td>$3,052</td>
</tr>
<tr>
<td>Decile 4</td>
<td>$11,133</td>
</tr>
<tr>
<td>Decile 5</td>
<td>$16,697</td>
</tr>
<tr>
<td>Decile 6</td>
<td>$23,306</td>
</tr>
<tr>
<td>Decile 7</td>
<td>$28,896</td>
</tr>
<tr>
<td>Decile 8</td>
<td>$37,033</td>
</tr>
<tr>
<td>Decile 9</td>
<td>$47,088</td>
</tr>
<tr>
<td>Decile 10</td>
<td>$85,308</td>
</tr>
<tr>
<td>Average</td>
<td>$25,264</td>
</tr>
</tbody>
</table>

Source: Household Income and Labour Dynamics in Australia (HILDA) Survey data, Access Economics

It is important to note that these figures represent the same measures of income averaged across two different groups of individuals, rather than averages of measures for the same ten groups. In simple terms, these lifetime income deciles below are constructed by recognising that:

- For each individual in the population, we observe past and present incomes (including that for the 2005-06 financial year), and are able to quickly form current year income deciles by ordering and grouping individuals.

- At some point in the future, each individual for whom we have measured 2005-06 income will also be included in a lifetime income decile, based on the total income they have earned in the past. By definition, the lifetime decile attached to each individual:
 - cannot change over time (since every individual lives once),
 - cannot be observed with certainty until the end of his/her life, and;
 - has ten possible outcomes, with the probabilities attached to those outcomes dependent on the future income of the individual, and of all other individuals in the population.

- For each possible combination of future ‘current year’ income deciles, the lifetime income for an individual can be estimated by adding up the average income in each decile that individual falls into in every future year. That is, if we just knew what future ‘current year’ decile ‘path’ each individual would follow, we could estimate their lifetime income decile.

- To estimate the future ‘path’ of income for individuals in each current year income decile, a Monte Carlo simulation approach is used:
An estimate of the probability attaching to a ‘guess’ at an individual’s future income decile can be made, based on the number of similar individuals who achieved that outcome in the past.

We know that these hypothetical income ‘paths’ are not likely to be accurate predictions for the individual, but if enough ‘guesses’ can be made they don’t need to actually be ‘right’ as long as it is known how likely they are to be ‘right’.

The probabilities attaching to each ‘path’ can be applied to estimate the share of each current year income decile which is expected to fall into each lifetime income decile.

These shares can then be applied to the (known) current year income deciles to obtain the lifetime income decile averages outlined above.